An asymptotic problem for a reaction-diffusion equation with a fast diffusion component
نویسندگان
چکیده
منابع مشابه
A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملThe Reaction-Diffusion Master Equation as an Asymptotic Approximation of Diffusion to a Small Target
The reaction-diffusion master equation (RDME) has recently been used as a model for biological systems in which both noise in the chemical reaction process and diffusion in space of the reacting molecules is important. In the RDME space is partitioned by a mesh into a collection of voxels. There is an unanswered question as to how solutions depend on the mesh spacing. To have confidence in usin...
متن کاملA Diffusion Equation with Exponential Nonlinearity Recant Developments
The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...
متن کاملIdentification Problem of Source Term of A Reaction Diffusion Equation
This paper will give the numerical difference scheme with Dirichlet boundary condition, and prove stability and convergence of the difference scheme, final numerical experiment results also confirm effectiveness of the algorithm. KeywordsFractional derivative; Numerical difference scheme; The gradient regularization method.
متن کاملAsymptotic behavior for a singular diffusion equation with gradient absorption
We study the large time behavior of non-negative solutions to the singular diffusion equation with gradient absorption ∂ t u − ∆ p u + |∇u| q = 0 in (0, ∞) × R N , for p c := 2N/(N + 1) < p < 2 and p/2 < q < q * := p − N/(N + 1). We prove that there exists a unique very singular solution of the equation, which has self-similar form and we show the convergence of general solutions with suitable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics and Stochastic Reports
سال: 1995
ISSN: 1045-1129
DOI: 10.1080/17442509508833963